第18章 突破困境(2/5)
题的原因之一。为了解决这一难题,他们尝试通过化学蚀刻的方法,对巴士车身表面进行预处理,使表面更加平整光滑,为稀土因子的附着创造更好的条件。同时,他们深入研究稀土因子的排列结构,试图找到一种最佳的排列方式,使其既能紧密贴合车身,又能充分发挥防护作用。林博士和成员们在实验室里夜以继日地奋战,不断调整稀土因子的排列参数,通过计算机模拟和实际试验相结合的方式,观察不同排列结构下稀土因子与车身材料的相互作用。尽管大部分尝试都以失败告终,但他们并未气馁,反而在挫折中越战越勇。
与此同时,负责等离子结界宝研究的小组,在阿明的带领下,对等离子结界宝的能量转换装置展开了细致的剖析。他们发现,能量转换装置内部的电路设计存在一些不合理之处,导致能量在转换过程中出现损耗和不稳定的情况。于是,他们重新设计了能量转换装置的电路布局,采用了一种更高效的能量传输材料,并对装置的核心部件进行了升级。在优化过程中,他们遭遇了一个棘手的问题:新的电路布局虽然提高了能量转换效率,但却引发了电磁干扰,影响了等离子结界宝的正常运行。阿明和小组成员们查阅了大量的资料,向多位相关领域的专家请教,经过无数次的试验和调整,终于找到了解决电磁干扰问题的方法。他们在能量转换装置周围添加了一层特殊的屏蔽材料,有效消除了电磁干扰,使得等离子结界宝能够稳定地输出能量,在车内空间形成均匀的抗菌场。
在科研基地里,两个小组的研究工作紧锣密鼓地持续推进着。负责稀土因子防护盾的小组,在经过无数次对稀土因子排列结构的调整与试验后,终于迎来了一丝曙光。
林博士盯着显微镜下的样本,眼中满是惊喜。经过反复尝试,他们发现一种类似蜂窝状的稀土因子排列结构,不仅能够完美地契合巴士车身表面经过预处理后的微观结构,还极大地增强了防护盾与车身的结合力。
“大家快来看,这种排列结构或许就是我们一直在寻找的答案!”林博士兴奋地招呼着小组成员。
众人围拢过来,看着显微镜下那整齐有序的蜂窝状排列,脸上纷纷露出了希望的笑容。但他们知道,这只是初步成果,还需要进行一系列严格的测试。
他们
本章还未完,请点击下一页继续阅读>>>